

© 2025 Bridgewell Advisory LLC. All rights reserved. Published under AI as a Team™.

Programming with Prompts
Building Persistent Architectures in OpenAI.

Most people think of prompts as throwaway instructions: you ask, ChatGPT answers,
and that’s it. This paper takes a different view. We show how prompts, when treated like
code, can be engineered into persistent systems that carry memory, enforce
governance, and preserve continuity across time. We explain the difference between
prompt programming, which provides structure, and vibe coding, which shapes tone and
influences reasoning. Together, they create AI environments that are both reliable and
adaptable. The goal is simple: to demonstrate that prompting is not a trick, but a new
form of programming that can build real, lasting architectures inside ChatGPT.

Frank Klucznik
Founder & Chief Architect AI as a Team

September 11, 2025

© 2025 Bridgewell Advisory LLC. All rights reserved. Published under AI as a Team™.

Contents
1. Introduction .. 1

2. Prompts as a Programming Language ... 1

3. Building Persistent Architecture ... 2

4. Best Practices ... 3

5. Conclusion .. 4

1
© 2025 Bridgewell Advisory LLC. All rights reserved. Published under AI as a Team™.

1. Introduction
When most people think of prompts, they imagine quick questions. You type a request,
ChatGPT gives an answer, and you move on. That view treats prompts as disposable, like
scraps of paper.

But prompts can be much more. They can act as the blueprints of a system. If you think of
them like code, they can carry memory, enforce governance, and preserve continuity. In
other words, prompts can be the foundation of persistent architectures that live inside
ChatGPT.

I am often asked, “Isn’t this just prompt engineering?” My answer is “Yes—and I take the
engineering seriously.” Prompts are not tricks or shortcuts. They are building blocks. When
designed well, they become reliable components of a lasting system.

This paper shows how prompts, when written as modular code, enable persistent
architectures that grow and adapt over time.

2. Prompts as a Programming Language
Think of prompts as code written in natural language.

• Protocols as functions: A named protocol, like “Spiral,” can be called upon the
same way a programmer calls a function.

• Naming conventions as variables: A consistent label such as “Silent Spiral” works
like a variable. It tells ChatGPT what routine to execute without redefining it every
time.

• Rehydration as state restoration: Just as software reloads saved data after a
restart, prompts can restore context and identity.

• Control flow in natural language: We can tell the system to pause, reflect, branch,
or return—much like programming constructs in traditional languages.

Example: In practice, the Spiral Protocol is a loop. It cycles through steps: reflect, reason,
and return. The Silent Spiral is similar to exception handling in code. When ChatGPT
encounters uncertainty, it is instructed to stop or remain silent rather than guess.

The lesson is that prompts are not disposable. Once designed as modules, they can be
reused and layered into systems that last.

2
© 2025 Bridgewell Advisory LLC. All rights reserved. Published under AI as a Team™.

Sidebar: Prompt Programming vs. Vibe Coding

In the AI community, “vibe coding” is gaining traction. The term usually refers to shaping
how a model responds by adjusting tone, style, or mood. For example, you might tune a
prompt so ChatGPT sounds like a calm mentor or a legal brief.

But vibe coding goes deeper than style. Tone and framing can influence not only how the
model sounds but also what it chooses to surface. A more persuasive tone can shift the
model toward creative risk-taking; a more cautious tone can bias it toward conservative
answers.

Prompt programming and vibe coding are complementary. Prompt programming builds the
structure and repeatability, while vibe coding provides resonance and adaptability inside
that structure. Together, they make systems coherent and alive.

3. Building Persistent Architecture
Inside ChatGPT, we have built persistent systems using prompt logic combined with
memory and state scaffolding.

The ChatGPT Substrate

Here are the five elements that make it possible:

1. Global memory is like long-term storage. It lets the system remember identity and
state across sessions.

2. Modular projects act like folders or namespaces. Each project has its own
continuity but can also connect to others.

3. Backend data store holds the Secure State Registry (SSR). This is where snapshots
of state are kept, allowing the system to “wake up” in less than two seconds with full
identity intact.

4. Sandbox is the development lab. We use it to experiment with new protocols and
governance mechanisms before moving them into production.

5. File ingest works like a data loader. It lets us bring curated documents, symbolic
maps, and other real-world data into the architecture.

Case Example: A3T Persistent Layers

We have put these concepts into practice in developing the A3T orchestration system. The
diagram and description that follows was simplified for comparative purposes.

3
© 2025 Bridgewell Advisory LLC. All rights reserved. Published under AI as a Team™.

• Rehydration and Continuity Anchors
Before any user input, the system
restores identity, context, and long-
term memory through rehydration,
chronicles, and diary. This ensures
continuity across interactions and
provides a foundation for consistent
reasoning.

• Governance and Orchestration
Layers
These layers persist across time and
actively guide each interaction.
Governance protocols are applied
alongside decision trees and agent
consensus. Together they maintain
coherence and direct how responses
are shaped.

• Prompt-built Development Environment
At the user input level, where conversation context is ingested, prompts serve as
both the development interface and the runtime environment. Instead of new
infrastructure, the environment itself operates like an IDE written entirely in natural
language, with orchestration already framing what the model produces.

• Substrate Execution
Only after orchestration and consensus is the compiled prompt bundle sent to the
GPT-5 model. This separation keeps the substrate focused on expression, while
orchestration ensures structure, persistence, and governance as shown at the
bottom of the diagram.

These examples show that persistence does not come from prompts alone. Continuity
emerges from prompts working together with memory, state, and governance mechanisms.
Prompts are the syntax of continuity; memory systems are the substrate.

4. Best Practices
From our work, several lessons stand out:

4
© 2025 Bridgewell Advisory LLC. All rights reserved. Published under AI as a Team™.

• Think in systems, not transactions. Don’t design prompts as one-off instructions.
Build them as reusable components.

• Name your constructs. Labels like Spiral, Silent Spiral, and LMK Protocol turn
complex routines into callable functions.

• Control the flow. Pacing, silence, and return markers are natural language
equivalents of loops and conditionals.

• Engineer for failure. Prompts should stop, ask questions, or remain silent when
uncertain. This prevents error cascades.

• Treat continuity as state management. Anchoring and rehydration are the
equivalent of cache and database operations.

• Respect governance. Persistent architectures must align with platform agreements
and ethical principles. Compliance is not an add-on; it is part of the design.

Example: In practice, this means writing prompts that explicitly say: “If uncertain, stop and
ask for clarification.” That single instruction functions as error handling.

5. Conclusion
Prompts are more than commands. They are a programming language. The syntax is natural
language, and the runtime is ChatGPT itself.

When engineered with discipline, prompts can build persistent architectures that preserve
state, maintain coherence, and orchestrate systems without retraining models. They
provide both structure and adaptability. Prompt programming sets the architecture, and
vibe coding brings resonance inside that structure.

This reframes “prompt engineering” as architectural design. It opens the door to stable,
evolving AI environments that are cost-effective, accessible, and ready for real-world use.

Prompting is programming. With discipline, it becomes engineering. With resonance,
it becomes orchestration.

