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About This Paper 
 
Bridgewell Advisory LLC is a private AI research and advisory lab focused on the real-world behavior 
of modern artificial intelligence systems. Our work examines how probabilistic, nondeterministic AI 
models operate at inference time. Particularly where technical design choices intersect with 
organizational risk, decision-making, and human accountability. 
 
The content of this paper reflects established properties of contemporary large language models, 
validated through direct observation, repeated experimentation, and system-level design work 
across commercial and embedded AI deployments. While these behaviors are well understood in 
parts of the research community, their implications are often misunderstood or underestimated in 
practice. 
 
We are sharing this material because AI developers and organizational leaders increasingly rely on 
these systems in contexts where correctness, uncertainty, and stopping behavior matter more than 
fluency or completeness. Misinterpreting how these systems generate outputs leads to predictable 
and avoidable failure modes. 
 
Our objective is straightforward: to help organizations deploy and use AI systems with clearer 
expectations, better controls, and informed human judgment. 
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Introduction 

Artificial intelligence systems feel powerful, fast, and increasingly capable. They can 
summarize complex documents, generate code, analyze data, and engage in fluent 
conversation. At the same time, they often produce outputs that surprise even 
technically experienced users. They may sound confident while being wrong, drift away 
from the original question, or deliver answers that are coherent but subtly misaligned. 

These behaviors are often described as hallucinations, bugs, or vendor-specific 
shortcomings. The term hallucination is commonly used, but it is imprecise. A more 
accurate description is confabulation: the generation of plausible, internally coherent 
outputs in the presence of missing or uncertain information. 

This distinction matters because it frames the behavior as a structural property of 
probabilistic generation rather than a system defect. Viewed this way, what is 
happening is neither mysterious nor unique to any one company or product. It is a direct 
consequence of how modern AI systems generate outputs and the conditions under 
which they are deployed. 

A foundational constraint applies to all modern AI systems discussed here: any system 
that relies on probabilistic, nondeterministic language models inherits the same class of 
risk, regardless of vendor, interface, or deployment architecture. Differences in product 
design, safety layers, fine-tuning, or system integration can reduce or amplify these 
risks, but they do not eliminate them. 

The central concept in understanding these behaviors is narrative momentum: the 
tendency of a generative system, once it has begun producing a coherent response, to 
continue extending that response toward completion, resolution, or closure—even when 
the information required to do so safely is incomplete. This momentum arises because 
each generated unit conditions the next. As generation proceeds, the system becomes 
increasingly constrained by its own prior output, and increasingly likely to resolve 
ambiguity implicitly rather than surface it explicitly. 

The purpose of this document is to explain, plainly and from the ground up, why AI 
systems produce the outputs they do, and to provide a mental model that makes those 
outputs predictable rather than surprising. 

How Generation Works 

A common assumption is that an AI system determines a complete answer internally 
and then outputs it. Modern language models do not work this way. Outputs are 
generated incrementally, one small unit at a time. Each generated unit conditions the 
next. There is no fully formed response waiting in the background. 

This has several important consequences. Early generation choices disproportionately 
influence later output. Each step narrows the range of plausible continuations. The 
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longer generation proceeds, the more committed the system becomes to its own 
trajectory. This explains why outputs often begin accurately and then drift. 

AI systems are often compared to search engines or databases. This comparison is 
misleading. When an AI system produces output, it is not retrieving an answer and 
returning it. It is generating a continuation based on patterns learned during training and 
signals present in the current context. This approach is powerful and flexible. It is also 
why plausibility can outpace accuracy. An output can sound exactly like the kind of 
answer that should exist, even when key assumptions are missing, outdated, or 
incorrect. 

Fluency and confidence are properties of this generation process. They are not 
indicators of correctness. 

Determinism, Reproducibility, and Training 

It is important to distinguish determinism from reproducibility. Language models are 
inherently nondeterministic. The same input can yield different outputs because 
generation is driven by probability distributions, not fixed rules. Techniques such as 
temperature control, random seeds, caching, and constrained decoding can improve 
reproducibility—they reduce variance across runs—but they do not change the 
underlying nature of generation, nor do they eliminate epistemic risk. Reproducible 
output is not the same as reliable output. 

Many discussions conflate training-time improvements with inference-time behavior. 
The risks described in this document arise primarily at inference time. Even a perfectly 
trained model must still generate outputs incrementally under uncertainty when 
deployed. Better training improves the statistical landscape the model operates in. It 
does not remove the fundamental properties that govern how outputs are produced in 
real time. 

Drift and Narrative Momentum 

Drift is often conflated with hallucination or fabrication. In practice, it is usually more 
subtle. Drift is gradual misalignment between the original intent of a request and the 
path an output takes over time. It often appears after a correct start. It is incremental 
rather than sudden, and it can be difficult to detect unless one is actively monitoring for 
it. 

Drift does not require a system failure. It emerges naturally from extended generation 
under uncertainty. As generation proceeds, the system becomes increasingly 
constrained by its own prior output. Correct early steps increase confidence, which in 
turn increases the likelihood that later ambiguity will be resolved implicitly rather than 
surfaced explicitly. 
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Longer outputs feel more helpful. They provide detail, explanation, and apparent 
completeness. Technically, however, longer generation increases risk. Each additional 
generated unit introduces another opportunity for assumption creep, reinforces earlier 
choices even if they were slightly off, and increases pressure to resolve ambiguity rather 
than surface it. Verbosity is not neutral. It is an active risk factor. 

Drift should therefore be understood not as a single failure event, but as a trajectory 
problem: the longer generation continues under uncertainty, the more likely the system 
is to converge on a plausible, but misaligned, endpoint. The practical question is not 
whether drift can occur, but how far the system is allowed to run once uncertainty is 
present. 

Why Constraining Output Changes Behavior 

Because generation is incremental, controlling how far generation is allowed to proceed 
changes behavior upstream. When a system is encouraged to stop early, fewer 
assumptions are introduced, ambiguities remain visible instead of being smoothed over, 
and the system is less likely to invent connective tissue to force resolution. 

This is not about hiding errors by printing less text. It is about preventing those errors 
from forming by shortening the generation trajectory. Silence, refusal, and requests for 
clarification are technically meaningful outcomes. They preserve correctness. 

Deployment Contexts: Same Risk, Different Visibility 

All AI systems that rely on probabilistic language models—whether exposed as chat 
interfaces, embedded in products, or wrapped in autonomous agents—share the same 
underlying risk profile: plausible but incorrect output, gradual misalignment over time, 
premature resolution of ambiguity, and confidence without verification. What varies 
across implementations is not whether these risks exist, but how visible they are, how 
quickly they propagate, and whether they can be interrupted. 

In conversational AI systems, output control has its most direct effect. Limiting output 
length reduces narrative momentum, surfaces ambiguity earlier, and encourages refusal 
and clarification. Errors may still occur early, but constrained generation causes the 
system to fail early and plainly rather than persuasively. 

In retrieval-augmented systems, retrieval constrains inputs by grounding the model in 
external sources. This often improves factual alignment, but it does not change how 
generation itself works. The most common failure mode is false confidence: the 
presence of retrieved text creates the appearance of grounding while generation still fills 
gaps implicitly. Output control and refusal conditions remain necessary. 

When AI is embedded in workflows or automation pipelines, output may not be 
visible to humans and generated content may trigger downstream actions. The 
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dominant risk is premature commitment. Output control must be paired with validation 
layers, human checkpoints, and explicit escalation paths. 

In action-oriented agents, language output is often transformed directly into execution: 
API calls, code changes, system actions. The primary risk is not verbosity but 
premature action. Safe agent design requires hard architectural boundaries: ambiguity 
must halt execution rather than be resolved automatically, high-impact actions require 
explicit confirmation, and refusal must be a valid terminal state. Output control is 
necessary but insufficient; execution control is the real safety mechanism. 

Across all contexts, the principle holds: the earlier uncertainty is surfaced, the safer the 
system becomes. 

Inference-Time Control Levers 

Modern AI systems expose a limited but meaningful set of inference-time controls. Used 
correctly, these levers do not eliminate risk, but they materially reduce the likelihood and 
severity of drift. 

Generation length constraints are the most direct control. Hard limits on output length 
shorten the generation trajectory and reduce narrative momentum. Many failure modes 
disappear simply because the system is not given enough room to invent connective 
explanations. 

Temperature and sampling controls regulate variance, not correctness. Lower values 
reduce randomness and make outputs more repeatable, but they do not remove the 
possibility of confident error. These controls are best understood as stability knobs, not 
safety mechanisms. 

Structured output constraints limit the system's freedom to elaborate. Requiring 
outputs to conform to schemas, enums, or fixed formats reduces ambiguity, prevents 
silent assumption expansion, and makes refusal states easier to detect 
programmatically. 

Explicit stopping and refusal conditions should be designed as first-class outcomes: 
insufficient information, conflicting constraints, or ambiguity should terminate generation 
rather than trigger resolution. Refusal is not a fallback—it is a correct result under 
uncertainty. 

Prompt constraints that define when generation must stop ("answer only if X is true," 
"do not infer missing values," "return 'insufficient information' if conditions are unmet") 
are often more effective than prompts that attempt to guide tone or style. 

These levers operate entirely at inference time. They do not depend on better training 
data, larger models, or architectural complexity. They work because they directly 
constrain how far probabilistic generation is allowed to proceed. 
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The Human Role in the System 

Humans provide intent, framing, and accountability. They also introduce ambiguity 
through shorthand, partial corrections, and evolving assumptions. AI systems will 
faithfully follow these signals unless explicitly constrained. 

In practice, "human-in-the-loop" does not mean review after the fact. It means defining 
where generation must stop and human judgment must resume. When user intent is 
ambiguous, the correct behavior is escalation, not resolution. When requirements are 
incomplete, generation should stop. When constraints conflict, AI outputs should 
surface trade-offs and uncertainty rather than recommendations. 

Operationally, human-in-the-loop means designing systems so that stopping, refusing, 
and escalating are expected behaviors—not exceptional ones. 

Why Drift Never Fully Disappears 

Drift can re-enter due to structural factors: context decay over time, human shorthand 
and assumption creep, boundary enforcement fatigue, and confusion between 
exploration, analysis, and execution. These are properties of extended interaction, not 
defects. 

Conclusion 

AI systems produce the outputs they do because of how they generate language: 
incrementally, probabilistically, and under pressure to continue. The risks observed are 
not vendor-specific failures, but inherent properties of nondeterministic generation at 
inference time. 

The practical mental model is simple: AI systems are probabilistic generators, not 
reasoning agents with memory. Control comes from structure and constraints, not 
intelligence. Short, disciplined exchanges outperform long, fluent ones. Stopping early is 
often safer than explaining further. 

Reliable use comes not from eliminating these properties, but from designing systems 
and interactions that surface uncertainty early, constrain generation deliberately, and 
keep humans accountable for decisions and actions. 

Predictable systems are more valuable than expressive ones. Constraint is not a 
limitation—it is what makes dependable use possible. 
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Appendix A: Operational Guidance and Best Practices 
for AI Users 

Audience: Operators, analysts, product managers, decision-makers, advanced users 

Purpose: This appendix explains how to work with AI systems safely and effectively, 
given how they actually generate outputs. It focuses on interaction patterns, not system 
design. 

A.1 What the AI Is Actually Doing (User View) 

AI systems do not “know” answers in advance. They generate responses incrementally, 
one step at a time, based on probability and context. This means: 

• Early phrasing matters more than users expect 
• Ambiguity is often resolved implicitly unless forced to surface 
• Longer answers increase confidence, not correctness 

Understanding this helps users recognize when an output is reliable—and when it is 
merely plausible. 

A.2 How to Ask Better Questions 

Good results come from precision, not verbosity. 

Prefer: 

• Explicit constraints (“answer only if data supports it”) 
• Clear scope (“summarize, do not infer”) 
• Defined stopping rules (“if unknown, say so”) 

Avoid: 

• “You know what I mean” 
• Implicit assumptions 
• Requests that force resolution (“pick the best option”) when trade-offs exist 

Remember: the system will try to help even when it should stop—unless you make 
stopping acceptable. 

A.3 Recognizing When the System Should Stop 

Stopping early is often the correct outcome. 

Signals that should trigger pause or escalation: 

• The system introduces assumptions you didn’t specify 
• Confidence increases without new evidence 
• Explanations become longer but not clearer 
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• The output shifts from analysis to recommendation without being asked 

“I don’t know” or “insufficient information” is a successful result, not a failure. 

A.4 Common User Anti-Patterns 

These patterns reliably increase risk: 

• “Just explain more.” 
This often amplifies narrative momentum and drift. 

• “Try again, but better.” 
Without changing constraints, this rarely improves correctness. 

• “Pick for me.” 
This transfers responsibility to a system that cannot own outcomes. 

• Treating fluency as authority. 
Clear language is not proof of correctness. 

A.5 Operational Checklist (Before Acting on Output) 

Before relying on an AI output, ask: 

1. Did I provide all required information explicitly? 
2. Did the system infer anything I didn’t state? 
3. Would a short answer have been safer than a long one? 
4. Was refusal an available outcome? 
5. Am I delegating judgment, or using support? 

If any answer is unclear, stop and reassess. 

 

A.6 The User’s Role 

Users are not passive recipients. They shape outcomes by: 

• Framing questions 
• Accepting refusal 
• Stopping generation when uncertainty appears 

Safe use is a shared responsibility. The system cannot compensate for unclear intent. 
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Appendix B: Engineering Guidance and Best 
Practices for AI Developers 

Audience: CTOs, platform engineers, LLM engineers, system architects 

Purpose: This appendix explains how to design and deploy AI systems that embody 
constraints, surface uncertainty early, and preserve human authority. 

B.1 Non-Negotiable Properties of LLMs 

All LLM-based systems share these properties: 

• Nondeterministic generation 
• Probability-driven outputs 
• Incremental inference at runtime 
• No intrinsic stopping condition 

No architecture, vendor, or fine-tuning strategy removes these properties. Design must 
accommodate them. 

B.2 Design for Stopping, Not Completion 

Most failures occur because systems are optimized to finish. 

Best practice: 

• Treat refusal as a terminal success state 
• Make “insufficient information” explicit 
• Ensure ambiguity halts progression 

If a system cannot stop, it is unsafe by design. 

B.3 Inference-Time Control Levers (What Actually Works) 

Generation length 

• Hard caps (max_tokens, response limits) 
• Early stopping conditions 
• Most effective drift reducer 

Temperature and sampling 

• Reduce variance, not error 
• Stability control, not safety control 

Structured output 

• Schemas, enums, fixed formats 
• Prevent silent expansion 
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• Make refusal machine-detectable 

Explicit refusal conditions 

• Conflicting constraints 
• Missing required inputs 
• Unresolvable ambiguity 

Prompt constraints 

• Define when generation must not continue 
• Often more effective than stylistic guidance 

These controls work because they limit how far probabilistic generation can run. 

B.4 Deployment Patterns and Required Constraints 

Conversational Systems 

• Refusal must be first-class 
• Long-form answers should be opt-in 
• Escalation paths must be visible 

Retrieval-Augmented Systems (RAG) 

• Retrieval constrains input, not generation 
• Must detect source disagreement 
• Must halt on retrieval uncertainty 
• “Grounded” ≠ safe 

Action-Oriented Agents 

• Output → action boundary must be explicit 
• Ambiguity must halt execution 
• High-impact actions require confirmation 
• Execution control matters more than verbosity 

The most dangerous agents are those that cannot say “stop.” 

B.5 Human-in-the-Loop (Engineering Reality) 

Human-in-the-loop is not review after execution. 

It is: 

• Defining decision boundaries 
• Enforcing escalation points 
• Preventing silent autonomy 

Engineering question to ask: 



Why AI Behaves the Way It Does 
 

10 
© 2025 Bridgewell Advisory LLC. All rights reserved. 

 

Where must the system stop and a human resume control? 

If the answer is unclear, the system is not ready. 

B.6 Common Engineering Anti-Patterns 

• “RAG makes it safe” 
• “More context fixes it” 
• “Lower temperature solves correctness” 
• “Let the agent decide” 
• “We’ll review outputs later” 

All of these fail under real-world uncertainty. 

B.7 Readiness Questions (Before Deployment) 

Every system should answer: 

1. What ambiguity is unacceptable? 
2. What must halt execution? 
3. How is refusal represented? 
4. Where does human authority re-enter? 
5. What happens when the model is confidently wrong? 

If these cannot be answered explicitly, do not deploy. 

 


