@ Al as a Team

Bridgewell Advisory LLC

Why Al Behaves the
Way It Does

A Practical Explanation of Probabilistic Al Behavior

About This Paper

Bridgewell Advisory LLC is a private Al research and advisory lab focused on the real-world behavior
of modern artificial intelligence systems. Our work examines how probabilistic, nondeterministic Al
models operate at inference time. Particularly where technical design choices intersect with
organizational risk, decision-making, and human accountability.

The content of this paper reflects established properties of contemporary large language models,
validated through direct observation, repeated experimentation, and system-level design work
across commercial and embedded Al deployments. While these behaviors are well understood in
parts of the research community, their implications are often misunderstood or underestimated in
practice.

We are sharing this material because Al developers and organizational leaders increasingly rely on
these systems in contexts where correctness, uncertainty, and stopping behavior matter more than
fluency or completeness. Misinterpreting how these systems generate outputs leads to predictable
and avoidable failure modes.

Our objective is straightforward: to help organizations deploy and use Al systems with clearer
expectations, better controls, and informed human judgment.

Frank W. Klucznik
1-10-2026

Why Al Behaves the Way It Does

Contents

I OAUCTION e e e
HOW GeNEration WOKKSo e e e

Determinism, Reproducibility, and Training
Drift and Narrative Momentum

Why Constraining Output Changes Behavior ...
Deployment Contexts: Same Risk, Different Visibility
Inference-Time CONtrOl LEVEIS..... oo

The Human Role in the System

Why Drift Never Fully DiSAPPEAIScouuuiieeeieiiee et
(@70] o o1 1113 o] o TR SPTRP
Appendix A: Operational Guidance and Best Practices for Al Users...........cccccccevuneee.

Appendix B: Engineering Guidance and Best Practices for Al Developers.....................

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

Introduction

Artificial intelligence systems feel powerful, fast, and increasingly capable. They can
summarize complex documents, generate code, analyze data, and engage in fluent
conversation. At the same time, they often produce outputs that surprise even
technically experienced users. They may sound confident while being wrong, drift away
from the original question, or deliver answers that are coherent but subtly misaligned.

These behaviors are often described as hallucinations, bugs, or vendor-specific
shortcomings. The term hallucination is commonly used, but it is imprecise. A more
accurate description is confabulation: the generation of plausible, internally coherent
outputs in the presence of missing or uncertain information.

This distinction matters because it frames the behavior as a structural property of
probabilistic generation rather than a system defect. Viewed this way, what is
happening is neither mysterious nor unique to any one company or product. It is a direct
consequence of how modern Al systems generate outputs and the conditions under
which they are deployed.

A foundational constraint applies to all modern Al systems discussed here: any system
that relies on probabilistic, nondeterministic language models inherits the same class of
risk, regardless of vendor, interface, or deployment architecture. Differences in product
design, safety layers, fine-tuning, or system integration can reduce or amplify these
risks, but they do not eliminate them.

The central concept in understanding these behaviors is narrative momentum: the
tendency of a generative system, once it has begun producing a coherent response, to
continue extending that response toward completion, resolution, or closure—even when
the information required to do so safely is incomplete. This momentum arises because
each generated unit conditions the next. As generation proceeds, the system becomes
increasingly constrained by its own prior output, and increasingly likely to resolve
ambiguity implicitly rather than surface it explicitly.

The purpose of this document is to explain, plainly and from the ground up, why Al
systems produce the outputs they do, and to provide a mental model that makes those
outputs predictable rather than surprising.

How Generation Works

A common assumption is that an Al system determines a complete answer internally
and then outputs it. Modern language models do not work this way. Outputs are
generated incrementally, one small unit at a time. Each generated unit conditions the
next. There is no fully formed response waiting in the background.

This has several important consequences. Early generation choices disproportionately
influence later output. Each step narrows the range of plausible continuations. The

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

longer generation proceeds, the more committed the system becomes to its own
trajectory. This explains why outputs often begin accurately and then drift.

Al systems are often compared to search engines or databases. This comparison is
misleading. When an Al system produces output, it is not retrieving an answer and
returning it. It is generating a continuation based on patterns learned during training and
signals present in the current context. This approach is powerful and flexible. It is also
why plausibility can outpace accuracy. An output can sound exactly like the kind of
answer that should exist, even when key assumptions are missing, outdated, or
incorrect.

Fluency and confidence are properties of this generation process. They are not
indicators of correctness.

Determinism, Reproducibility, and Training

It is important to distinguish determinism from reproducibility. Language models are
inherently nondeterministic. The same input can yield different outputs because
generation is driven by probability distributions, not fixed rules. Techniques such as
temperature control, random seeds, caching, and constrained decoding can improve
reproducibility—they reduce variance across runs—but they do not change the
underlying nature of generation, nor do they eliminate epistemic risk. Reproducible
output is not the same as reliable output.

Many discussions conflate training-time improvements with inference-time behavior.
The risks described in this document arise primarily at inference time. Even a perfectly
trained model must still generate outputs incrementally under uncertainty when
deployed. Better training improves the statistical landscape the model operates in. It
does not remove the fundamental properties that govern how outputs are produced in
real time.

Drift and Narrative Momentum

Drift is often conflated with hallucination or fabrication. In practice, it is usually more
subtle. Drift is gradual misalignment between the original intent of a request and the
path an output takes over time. It often appears after a correct start. It is incremental
rather than sudden, and it can be difficult to detect unless one is actively monitoring for
it.

Drift does not require a system failure. It emerges naturally from extended generation
under uncertainty. As generation proceeds, the system becomes increasingly
constrained by its own prior output. Correct early steps increase confidence, which in
turn increases the likelihood that later ambiguity will be resolved implicitly rather than
surfaced explicitly.

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

Longer outputs feel more helpful. They provide detail, explanation, and apparent
completeness. Technically, however, longer generation increases risk. Each additional
generated unit introduces another opportunity for assumption creep, reinforces earlier
choices even if they were slightly off, and increases pressure to resolve ambiguity rather
than surface it. Verbosity is not neutral. It is an active risk factor.

Drift should therefore be understood not as a single failure event, but as a trajectory
problem: the longer generation continues under uncertainty, the more likely the system
is to converge on a plausible, but misaligned, endpoint. The practical question is not
whether drift can occur, but how far the system is allowed to run once uncertainty is
present.

Why Constraining Output Changes Behavior

Because generation is incremental, controlling how far generation is allowed to proceed
changes behavior upstream. When a system is encouraged to stop early, fewer
assumptions are introduced, ambiguities remain visible instead of being smoothed over,
and the system is less likely to invent connective tissue to force resolution.

This is not about hiding errors by printing less text. It is about preventing those errors
from forming by shortening the generation trajectory. Silence, refusal, and requests for
clarification are technically meaningful outcomes. They preserve correctness.

Deployment Contexts: Same Risk, Different Visibility

All Al systems that rely on probabilistic language models—whether exposed as chat
interfaces, embedded in products, or wrapped in autonomous agents—share the same
underlying risk profile: plausible but incorrect output, gradual misalignment over time,
premature resolution of ambiguity, and confidence without verification. What varies
across implementations is not whether these risks exist, but how visible they are, how
quickly they propagate, and whether they can be interrupted.

In conversational Al systems, output control has its most direct effect. Limiting output
length reduces narrative momentum, surfaces ambiguity earlier, and encourages refusal
and clarification. Errors may still occur early, but constrained generation causes the
system to fail early and plainly rather than persuasively.

In retrieval-augmented systems, retrieval constrains inputs by grounding the model in
external sources. This often improves factual alignment, but it does not change how
generation itself works. The most common failure mode is false confidence: the
presence of retrieved text creates the appearance of grounding while generation still fills
gaps implicitly. Output control and refusal conditions remain necessary.

When Al is embedded in workflows or automation pipelines, output may not be
visible to humans and generated content may trigger downstream actions. The

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

dominant risk is premature commitment. Output control must be paired with validation
layers, human checkpoints, and explicit escalation paths.

In action-oriented agents, language output is often transformed directly into execution:
API calls, code changes, system actions. The primary risk is not verbosity but
premature action. Safe agent design requires hard architectural boundaries: ambiguity
must halt execution rather than be resolved automatically, high-impact actions require
explicit confirmation, and refusal must be a valid terminal state. Output control is
necessary but insufficient; execution control is the real safety mechanism.

Across all contexts, the principle holds: the earlier uncertainty is surfaced, the safer the
system becomes.

Inference-Time Control Levers

Modern Al systems expose a limited but meaningful set of inference-time controls. Used
correctly, these levers do not eliminate risk, but they materially reduce the likelihood and
severity of drift.

Generation length constraints are the most direct control. Hard limits on output length
shorten the generation trajectory and reduce narrative momentum. Many failure modes
disappear simply because the system is not given enough room to invent connective
explanations.

Temperature and sampling controls regulate variance, not correctness. Lower values
reduce randomness and make outputs more repeatable, but they do not remove the
possibility of confident error. These controls are best understood as stability knobs, not
safety mechanisms.

Structured output constraints limit the system's freedom to elaborate. Requiring
outputs to conform to schemas, enums, or fixed formats reduces ambiguity, prevents
silent assumption expansion, and makes refusal states easier to detect
programmatically.

Explicit stopping and refusal conditions should be designed as first-class outcomes:
insufficient information, conflicting constraints, or ambiguity should terminate generation
rather than trigger resolution. Refusal is not a fallback—it is a correct result under
uncertainty.

Prompt constraints that define when generation must stop ("answer only if X is true,"
"do not infer missing values," "return 'insufficient information' if conditions are unmet")
are often more effective than prompts that attempt to guide tone or style.

These levers operate entirely at inference time. They do not depend on better training
data, larger models, or architectural complexity. They work because they directly
constrain how far probabilistic generation is allowed to proceed.

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

The Human Role in the System

Humans provide intent, framing, and accountability. They also introduce ambiguity
through shorthand, partial corrections, and evolving assumptions. Al systems will
faithfully follow these signals unless explicitly constrained.

In practice, "human-in-the-loop" does not mean review after the fact. It means defining
where generation must stop and human judgment must resume. When user intent is
ambiguous, the correct behavior is escalation, not resolution. When requirements are
incomplete, generation should stop. When constraints conflict, Al outputs should
surface trade-offs and uncertainty rather than recommendations.

Operationally, human-in-the-loop means designing systems so that stopping, refusing,
and escalating are expected behaviors—not exceptional ones.

Why Drift Never Fully Disappears

Drift can re-enter due to structural factors: context decay over time, human shorthand
and assumption creep, boundary enforcement fatigue, and confusion between
exploration, analysis, and execution. These are properties of extended interaction, not
defects.

Conclusion

Al systems produce the outputs they do because of how they generate language:
incrementally, probabilistically, and under pressure to continue. The risks observed are
not vendor-specific failures, but inherent properties of nondeterministic generation at
inference time.

The practical mental model is simple: Al systems are probabilistic generators, not
reasoning agents with memory. Control comes from structure and constraints, not
intelligence. Short, disciplined exchanges outperform long, fluent ones. Stopping early is
often safer than explaining further.

Reliable use comes not from eliminating these properties, but from designing systems
and interactions that surface uncertainty early, constrain generation deliberately, and
keep humans accountable for decisions and actions.

Predictable systems are more valuable than expressive ones. Constraint is not a
limitation—it is what makes dependable use possible.

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

Appendix A: Operational Guidance and Best Practices
for Al Users
Audience: Operators, analysts, product managers, decision-makers, advanced users

Purpose: This appendix explains how to work with Al systems safely and effectively,
given how they actually generate outputs. It focuses on interaction patterns, not system
design.

A.1 What the Al Is Actually Doing (User View)

Al systems do not “know” answers in advance. They generate responses incrementally,
one step at a time, based on probability and context. This means:

o Early phrasing matters more than users expect
o Ambiguity is often resolved implicitly unless forced to surface
e Longer answers increase confidence, not correctness

Understanding this helps users recognize when an output is reliable—and when it is
merely plausible.

A.2 How to Ask Better Questions
Good results come from precision, not verbosity.
Prefer:

« Explicit constraints (“answer only if data supports it”)
e Clear scope (“summarize, do not infer”)
o Defined stopping rules (“if unknown, say so”)

Avoid:

“You know what | mean”
e Implicit assumptions
o Requests that force resolution (“pick the best option”) when trade-offs exist

Remember: the system will try to help even when it should stop—unless you make
stopping acceptable.

A.3 Recognizing When the System Should Stop
Stopping early is often the correct outcome.
Signals that should trigger pause or escalation:

e The system introduces assumptions you didn’t specify
« Confidence increases without new evidence
« Explanations become longer but not clearer

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

e The output shifts from analysis to recommendation without being asked
“I don’t know” or “insufficient information” is a successful result, not a failure.
A.4 Common User Anti-Patterns
These patterns reliably increase risk:

e “Just explain more.”
This often amplifies narrative momentum and drift.

e “Try again, but better.”
Without changing constraints, this rarely improves correctness.

e “Pick for me.”
This transfers responsibility to a system that cannot own outcomes.

o Treating fluency as authority.
Clear language is not proof of correctness.

A.5 Operational Checklist (Before Acting on Output)
Before relying on an Al output, ask:

1. Did | provide all required information explicitly?

2. Did the system infer anything | didn’t state?

3. Would a short answer have been safer than a long one?
4. Was refusal an available outcome?

5. Am | delegating judgment, or using support?

If any answer is unclear, stop and reassess.

A.6 The User’s Role

Users are not passive recipients. They shape outcomes by:

e Framing questions
e Accepting refusal
o Stopping generation when uncertainty appears

Safe use is a shared responsibility. The system cannot compensate for unclear intent.

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

Appendix B: Engineering Guidance and Best
Practices for Al Developers
Audience: CTOs, platform engineers, LLM engineers, system architects

Purpose: This appendix explains how to design and deploy Al systems that embody
constraints, surface uncertainty early, and preserve human authority.

B.1 Non-Negotiable Properties of LLMs
All LLM-based systems share these properties:

Nondeterministic generation
Probability-driven outputs
Incremental inference at runtime
No intrinsic stopping condition

No architecture, vendor, or fine-tuning strategy removes these properties. Design must
accommodate them.

B.2 Design for Stopping, Not Completion

Most failures occur because systems are optimized to finish.

Best practice:

« Treat refusal as a terminal success state
« Make “insufficient information” explicit
e Ensure ambiguity halts progression

If a system cannot stop, it is unsafe by design.
B.3 Inference-Time Control Levers (What Actually Works)
Generation length

e Hard caps (max_tokens, response limits)
« Early stopping conditions
o Most effective drift reducer

Temperature and sampling

« Reduce variance, not error
« Stability control, not safety control

Structured output

« Schemas, enums, fixed formats
e Prevent silent expansion

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

« Make refusal machine-detectable
Explicit refusal conditions

e Conflicting constraints
e Missing required inputs
e Unresolvable ambiguity

Prompt constraints

o Define when generation must not continue
« Often more effective than stylistic guidance

These controls work because they limit how far probabilistic generation can run.
B.4 Deployment Patterns and Required Constraints
Conversational Systems

o Refusal must be first-class
e Long-form answers should be opt-in
o Escalation paths must be visible

Retrieval-Augmented Systems (RAG)

Retrieval constrains input, not generation
Must detect source disagreement

Must halt on retrieval uncertainty
“Grounded” # safe

Action-Oriented Agents

Output — action boundary must be explicit
Ambiguity must halt execution

High-impact actions require confirmation
Execution control matters more than verbosity

The most dangerous agents are those that cannot say “stop.”
B.5 Human-in-the-Loop (Engineering Reality)
Human-in-the-loop is not review after execution.

It is:

o Defining decision boundaries
« Enforcing escalation points
e Preventing silent autonomy

Engineering question to ask:

© 2025 Bridgewell Advisory LLC. All rights reserved.

Why Al Behaves the Way It Does

Where must the system stop and a human resume control?
If the answer is unclear, the system is not ready.
B.6 Common Engineering Anti-Patterns

“‘RAG makes it safe”

“More context fixes it”

“Lower temperature solves correctness”
“Let the agent decide”

“We’ll review outputs later”

All of these fail under real-world uncertainty.
B.7 Readiness Questions (Before Deployment)
Every system should answer:

What ambiguity is unacceptable?

What must halt execution?

How is refusal represented?

Where does human authority re-enter?

What happens when the model is confidently wrong?

aobrwbd =

If these cannot be answered explicitly, do not deploy.

© 2025 Bridgewell Advisory LLC. All rights reserved.

10

